Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 18, 2026
-
Free, publicly-accessible full text available November 24, 2026
-
Free, publicly-accessible full text available October 23, 2026
-
Recent advances in continuum embedding models have enabled the incorporation of solvent and electrolyte effects into density functional theory (DFT) simulations of material surfaces, significantly benefiting electrochemistry, catalysis, and other applications. To extend the simulation of diverse systems and properties, the implementation of continuum embedding models into the Environ library adopts a modular programming paradigm, offering a flexible interface for communication with various DFT programs. The speed and scalability of the current implementation rely on a smooth definition of the key physical properties of the atomistic system, in particular, of its electronic density. This has hindered the coupling of Environ with all-electron simulation packages, as the sharp electron density peaks near atomic nuclei are difficult to represent on regular grids. In this work, we introduce a novel smoothing scheme that transforms atom-centered electron densities into a regular grid representation while preserving the accuracy of electrostatic calculations. This approach enables a minimal and generic interface, facilitating seamless interoperability between Environ and all-electron DFT programs. We demonstrate this development through the coupling of Environ with the FHI-aims package and present benchmark simulations that validate the proposed method.more » « lessFree, publicly-accessible full text available October 28, 2026
-
We present a reformulation of QM/MM as a fully quantum mechanical theory of interacting subsystems, all treated at the level of density functional theory (DFT). For the MM subsystem, which lacks orbitals, we assign an ad hoc electron density and apply orbital-free DFT functionals to describe its quantum properties. The interaction between the QM and MMsubsystems is also treated using orbital-free density functionals, accounting for Coulomb interactions, exchange, correlation, and Pauli repulsion. Consistency across QM and MM subsystems is ensured by employing data-driven, many-body MM force fields that faithfully represent DFT functionals. Applications to water-solvated systems demonstrate that this approach achieves unprecedented, very rapid convergence to chemical accuracy as the size of the QM subsystem increases. We validate the method with several pilot studies, including water bulk, water clusters (prism hexamer and pentamers), solvated glucose, a palladium aqua ion, and a wet monolayer of MoS2.more » « less
-
The computational modeling of electrochemical interfaces and their applications in electrocatalysis has attracted great attention in recent years. While tremendous progress has been made in this area, however, the accurate atomistic descriptions at the electrode/electrolyte interfaces remain a great challenge. The Computational Hydrogen Electrode (CHE) method and continuum modeling of the solvent and electrolyte interactions form the basis for most of these methodological developments. Several posterior corrections have been added to the CHE method to improve its accuracy and widen its applications. The most recently developed grand canonical potential approaches with the embedded diffuse layer models have shown considerable improvement in defining interfacial interactions at electrode/electrolyte interfaces over the state-of-the-art computational models for electrocatalysis. In this Review, we present an overview of these different computational models developed over the years to quantitatively probe the thermodynamics and kinetics of electrochemical reactions in the presence of an electrified catalyst surface under various electrochemical environments. We begin our discussion by giving a brief picture of the different continuum solvation approaches, implemented within the ab initio method to effectively model the solvent and electrolyte interactions. Next, we present the thermodynamic and kinetic modeling approaches to determine the activity and stability of the electrocatalysts. A few applications to these approaches are also discussed. We conclude by giving an outlook on the different machine learning models that have been integrated with the thermodynamic approaches to improve their efficiency and widen their applicability.more » « less
-
Abstract Solvation effects profoundly influence the characteristics and behavior of chemical systems in liquid solutions. The interaction between solute and solvent molecules intricately impacts solubility, reactivity, stability, and various chemical processes. Continuum solvation models gained prominence in quantum chemistry by implicitly capturing these interactions and enabling efficient investigations of diverse chemical systems in solution. In comparison, continuum solvation models in condensed matter simulation are very recent. Among these, the self‐consistent continuum solvation (SCCS) and the soft‐sphere continuum solvation models (SSCS) have been among the first to be successfully parameterized and extended to model periodic systems in aqueous solutions and electrolytes. As most continuum approaches, these models depend on a number of parameters that are linked to experimental or theoretical properties of the solvent, or that can be tuned based on reference data. Here, we present a systematic parameterization of the SSCS model for over 100 nonaqueous solvents. We validate the model's efficacy across diverse solvent environments by leveraging experimental solvation‐free energies and partition coefficients from comprehensive databases. The average root means square error over all the solvents was calculated as 0.85 kcal/mol which is below the chemical accuracy (1 kcal/mol). Similarly to what has been reported by Hille et al. (J. Chem. Phys.2019,150, 041710.) for the SCCS model, a single‐parameter model accurately reproduces experimental solvation energies, showcasing the transferability and predictive power of these continuum approaches. Our findings underscore the potential for a unified approach to predict solvation properties, paving the way for enhanced computational studies across various chemical environments.more » « less
An official website of the United States government

Full Text Available